Trapping of a spiral-like intermediate of the bacterial cytokinetic protein FtsZ.

نویسندگان

  • Katherine A Michie
  • Leigh G Monahan
  • Peter L Beech
  • Elizabeth J Harry
چکیده

The earliest stage in bacterial cell division is the formation of a ring, composed of the tubulin-like protein FtsZ, at the division site. Tight spatial and temporal regulation of Z-ring formation is required to ensure that division occurs precisely at midcell between two replicated chromosomes. However, the mechanism of Z-ring formation and its regulation in vivo remain unresolved. Here we identify the defect of an interesting temperature-sensitive ftsZ mutant (ts1) of Bacillus subtilis. At the nonpermissive temperature, the mutant protein, FtsZ(Ts1), assembles into spiral-like structures between chromosomes. When shifted back down to the permissive temperature, functional Z rings form and division resumes. Our observations support a model in which Z-ring formation at the division site arises from reorganization of a long cytoskeletal spiral form of FtsZ and suggest that the FtsZ(Ts1) protein is captured as a shorter spiral-forming intermediate that is unable to complete this reorganization step. The ts1 mutant is likely to be very valuable in revealing how FtsZ assembles into a ring and how this occurs precisely at the division site.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymmetric Cell Division in B. subtilis Involves a Spiral-like Intermediate of the Cytokinetic Protein FtsZ

A fundamental feature of development in the spore-forming bacterium Bacillus subtilis is the switch from medial to asymmetric division. The switch is brought about by a change in the location of the cytokinetic Z ring, which is composed of the tubulin-like protein FtsZ, from the cell middle to the poles during sporulation. We report that the medial Z ring is replaced by a spiral-like filament o...

متن کامل

Bacterial Cytokinesis: FzlA Frizzes FtsZ Filaments for Fission Force

Most bacteria divide by assembling filaments of the tubulin-like protein FtsZ into a cytokinetic ring, which then constricts. A recent study suggests that Caulobacter crescentus uses a novel regulator, FzlA, to activate ring constriction by inducing helical bundles of FtsZ filaments.

متن کامل

Functional Domain Analysis of the Cell Division Inhibitor EzrA

The precise spatial and temporal control of bacterial cell division is achieved through the balanced actions of factors that inhibit assembly of the tubulin-like protein FtsZ at aberrant subcellular locations or promote its assembly at the future sites of division. In Bacillus subtilis, the membrane anchored cell division protein EzrA, interacts directly with FtsZ to prevent aberrant FtsZ assem...

متن کامل

Dynamics of FtsZ assembly during sporulation in Streptomyces coelicolor A3(2).

FtsZ, the bacterial tubulin homologue, is the main player in at least two distinct processes of cell division during the development of Streptomyces coelicolor A3(2). It forms cytokinetic rings and is required for the formation of both the widely spaced hyphal cross walls in the substrate mycelium and the specialized septation that converts sporogenic aerial hyphae into spores. The latter devel...

متن کامل

A widely conserved bacterial cell division protein that promotes assembly of the tubulin-like protein FtsZ.

Cell division in bacteria is mediated by the tubulin-like protein FtsZ, which assembles into a structure known as the Z ring at the future site of cytokinesis. We report the discovery of a Z-ring-associated protein in Bacillus subtilis called ZapA. ZapA was found to colocalize with the Z ring in vivo and was capable of binding to FtsZ and stimulating the formation of higher-order assemblies of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 188 5  شماره 

صفحات  -

تاریخ انتشار 2006